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Final Report on ONR N00014-86-K-0054

Roger King

University of Colorado
Department of Computer Science

Boulder, Colorado 80309

The self-adaptive databases project at the University of Colorado has produced
several substantial results. Parallel algorithms for the maintenance of derived data in an
object-oriented database management system have been developed. These algorithms
dramatically reduce the amount of I/O necessary to keep complex engineering database
entities up to date.

Mechanisms have been developed which integrate two directions which have been
prominent in the database research community - behavioral and structural (or "semantic")
object-oriented modeling. This has allowed the support of data objects which are both
structurally complex and behavioraiiy powerful. This is crucial in supporting emerging
engineering applications.

Also, the project has resulted in the development of mechanisms for the self-
adaptive clustering of data and the self-adaptive scheduling of database updates accord-
ing to usage patterns. A self-adaptive approach is seen as a promising way to solve the
well-known short-coming of relational databases - they are typically too slow to provide
proper support of engineering systems.

Finally, a prototype system has been implemented, in order to provide a basis for
experimentation and for the evolution of the underlying algorithms. In particular, sub-
stantial experiments have been performed in order to illustrate that the techniques
developed are useful for engineering databases.

The algorithms and self-adaptive mechanisms, as well as the prototype implementa-
tion are described in detail in [2, 5], and the application of this system to engineering
databases is discussed in [1, 3,4]. Semantic models are described in [6].

All of the papers referenced in this report were derived from work supported by this
project. The three journal papers which are referenced are included with this report, in
order to provide more details on the result of the project. Work is continuing, with the
parallel algorithms being adapted and expanded to handle the distribution of complex,
derived data over a network of databases. As engineering design applications are natur-
ally distributed, this is seen as an important research direction.
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* The Cactis Project: Database Support

for Software Environments
SCOTT E. HUDSON, MEMBER, IEEE, AND ROGER KING, MEMBER, IEEE

Absmoct-The Cactis project is an on-going effort oriented toward neering. Cactis, as it stands, is a multiuser centralized
extending database support from traditional business oriented appi- database management system. A brief preliminary report
catlons to software environments. The main goals of the project are to
construct an appropriate data model, and develop new techniques t on Cactis appears in [20].
support the unusual data management needs of software environ- In Section 1I of this paper, we discuss the Cactis DBMS.
ments. including program compilations, software configurations, load Our focus is not on the construction of database systems.
modules, project schedules, software versions. nested and long trans- but on the special data modeling capabilities of Cactis and
actions, and program transformations. The ability to manage derived how they can be used to support the software lifecycle.
information is a common theme running through many ortifese un- Therefore, in Section II we concentrate on the Cactis data
usual data needs, and the Cactis database management system is unique
in its ability to represent and maintain derived data in a time and space model and the methods Cactis. uses to manage complex
elficient fashion. A central contribution of Cactis is its integration of data. The data model of Cactis includes powerful type
the type constructors of semantic models and the localized behavior constructors necess .ry to model such objects as programs
capabilities of object-oriented database management systems. The and program versions. Unlike business applications, there
Cactis database management system is nearing completion. are also many forms of derived data in a software envi-

lnxe r Terms-Database management system, software environ- ronment. These can include coarse grained data such as
mea~ts, program compilations, software configurations. and load

modules, as well as fine grained data such as the control

1. INTRODUCTION and data flow properties of individual modules, state-
rTHE goal of the Cactis project is to extend the useful- ments, or expressions. The type constructors found in

X ness of database technology from traditional database Cactis are derived from semantic databases [24], [29]. To
applications to engineering, and in particular, software manage derived information, Cactis uses techniques in the
and software environments [51, [9], [391, [411, [451. This spirit of object-oriented databases [13], whereby the rulesnecessary to calculate derived values are embedded in dan-
means developing database facilities for the management ae es T usatis is a emantic dan
of the myriad of unusual processes and data types in- tabase objects. Thus, Cactis is both a semantic and an
volved in the support of the software lifecycle, both for object-oriented database.

In the third section, we describe on-going efforts to ap-small scale programming tasks. and for programming in
the large [ 11]. These include the design. coding, and de- ply Cactis to software environment support. This work isthelare ( I. Teseinlud th dsig. cdig, nd e- n progress and is incomplete. Our goal is to construct a
bugging of computer programs. as well as the creation.
maintenance, and reuse of modules and versions. Soft- real-life software application on top of Cactis. and to useit as a way of evolving the functionality and implemen-
ware environments are also designed to manage docu- tai o ac I e tin e focus on howlCacni

mentations, requirements specifications. schedules, bug tation of Cactis. In Section III we focus on how Cactis
reports. test data,. etc. may be used to support the unusual forms of data manip-
Researchers have noted the unique database require- ulation required by a software environment DBMS. Theet se eneeds of a software environment database range over aments of software environments [2], [21]. In this paper. bra

we describe the general scope or the Cactis project, which broad spectrum of capabilities. For example, a software
environment must support fine grained data about individ-involves the development of a DBMS called Cactis, asdevelpmentual modules and statements for use in optimization of code

well as the construction of Cactis application software de- w a ople a database n simiytis ts by
signed to support software environments. We discuss the win
manner in which the Cactis DBMS provides a unified ap- g a program to be viewed as a number of data ob-
proach to satisfying many of the needs of software engi- jects, and by directly supporting the primitives needed to

implement data flow analysis.
Manuscript rcived January. 15. 198. This work was supported by the To support aspects of programming in the large within

Office of Naval Research under Contract N00014-86-K-0054 and by the the same framework, the database should also support the
National Science Foundation under Grant DMC-8505164. manipulation of programs as a whole and even entities

S. E. Hudson is with the Department or Computer Science. University larger than single programs. For example. a common
of Arizona. Tucson. AZ $572 1.

R. King is with the Department of Computer Science. University of oft tool is the "make" capability found in UNIX9
Colorado. Boulder. CO 80309.

IEEE Log Number 8820968. 'UNIX is a registered trademark of AT&T Bell Laiboratones.

0098-5589/88/0600-0709S01.00 © 1988 IEEE

Le,- o



710 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 6. JUNE 1988

(151 and other environments [81, which is used to control time. While we do not claim that Cactis meets everyone's
recompilation of programs based on last modification definition of object-oriented, we do feel that it reflects the
times and mutual dependencies. Cactis can easily be pro- two major interpretations or the term. It supports static
grammed to perform these tasks. Similarly, Cactis can be (or structural) objects, by providing type constructors
used to manage entities which represent schedules and along the lines of a semantic model. Cactis also allows
other management data which may transcend a single pro- objects to have local behavior, in the form of procedur-
gram. Another example of special requirements placed on ally-derived attributes. Below, we describe the Cactis data
a software environment DBMS is that the user is likely to model and the manner in which is has been implemented
desire database transactions whose durations are much in order to ensure a reasonable level of efficiency. As the
longer than traditional business transactions. A typical goal of this paper is to describe the application of Cactis.
transaction might be a program bug fix. which could in- and not the details of its implementation, we describe the
volve a long, interactive period of updating a program. system only enough to provide the proper background for
then the processes of recompiling the program and recon- Section III.
figuring any system which uses it. This may also call for Other researchers have built object-oriented database
the use of nested transactions, to support the many subac- systems. A number of object-oriented database research
tivities involved in this procedure. (projects are described in [13]. These projects range from

To date, the main contributions of the Cactis project are \database implementations of the message passing para-
the integration or semantic and object-oriented database digm of Smalltalk [35], [361 to extensible systems which
mechanisms. and the ability to manage derived data in a are designed to support objects of varying size [61, to sys-
space and time efficient fashion. The mechanisms used tems designed to support general engineering and multi-
within a Cactis database to manage derived data are based media applications [371, [50]. We feel that Cactis is
loosely on attribute grammar techniques used in compiler unique in its clean intermixing of structural and behav-
construction [321, [33], as well as from more recent work ioral mechanisms, and in its efficient implementation.
on incremental attribute evaluation [121, [43] used in syn-
tax directed editors. These mechanisms may be used to A. The Cactis Data Model
implement. in a uniform fashion, the various forms of de- Traditionally, database applications have used database
rived data found in a software environment. Another con- systems which are based on simple record-oriented
tribution of Cactis is an efficient rollback and recovery models. Models, such as the network or relational models.
mechanism. which is of primary importance in order to essentially represent an object as a flat record structure.
support long nested transactions and versions. consisting of a finite number of fields. Each field contains

The fourth section of this paper describes the current a fixed-length printable value. Thus. when manipulating
status of Cactis. It also describes future goals. and in par- a traditional database, an application program typically
ticular discusses the manner in which we intend to exper- processes a large number of identically structured records
iment with our prototype system. As little is known about and performs a similar manipulation on each record. An
the sorts of real-life data that will be found in environ- example might be deducting federal tax from each of per-
ments of the future, we propose instrumenting Cactis with haps thousands of employee payroll records. It might be
software which may be used to gather statistical infor- necessary to relate other information to each record. and
mation. We will then distribute Cactis for experimenta- if so, logical or physical pointers are used. For example.
tion. In this way, we may learn critical information con- occasionally an employee may have a partial tax exempt
cerning such things as data object sizes. transaction types status: in these cases, the payroll record might point to a
and durations. and rollback and recovery needs. This will record in another file which tells the payroll system how
allow us to evolve Cactis into a more useful system, to calculate that person's tax.

In sum. the Cactis project clearly has very broad re- There are two very important distinctions that separate
search goals. It is intended to support the database needs traditional business applications and engineering database
of the entire software lifecycle. and thus incorporates applications. First. the objects being manipulated are typ-
much of the functionality of a software environment. In ically not as easily represented as simple. flat records. And
this paper, we address the unique data needs of environ- second, an engineering database does not usually have the
ments. and show how the Cactis DBMS is able to support very low schema to data ratio that is commonly found in
them with a small set of data modeling and data manipu- business applications. This means that there are fewer ob-
lation mechanisms. The general goal of the project is to jects of a given type. These two distinctions cause the
centralize all of the database functionality of a software record-oriented batch mode of business databases to not
environment. This will minimize the effort needed to con- be as useful in an engineering application.
struct environments, and will help allow the design. use. Specifically. VLSI and PCB designs. CAD/CAM ob-
reuse, and maintenance of Noftware to be performed efti- jects. and software objects are often very intricate. These
ciently. applications have unusual data modeling needs. such as

the ability to allow an object to have structured or com-
1I. THE C.\cris DBMS plex attributes, and the ability to represent unusual forms

The term "object-oriented'" is a widely used term. with of data. such as derived data [201 and versions [281. Fur-
many interpretations. It is also a very popular term at this ther. when manipulating engineering databases, a user
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often deals with a smaller number of much more intricate o w MOO
objects. Commonly. a business user would manipulate at

one time many employees in a payroll database or savings at_ --='_
accounts in a bank, whereas an engineer would manipu-

late only a few modules in a software system at one time.
The engineer might also need to keep track of multiple
versions of one program. In order to support the data
modeling needs of a software environment, Cactis has
drawn on two areas of recent database research, semantic
and object-oriented data modeling.

1) Constructed Types: A Cactis database is viewed as
a collection of objects similar to the objects found in
Smalltalk [171. Each data object has a group of data val-
ues attached to it called attributes. An attribute may have
a value of any C data type (except pointer types). The set
of attributes attached to an object is determined by the
type of the object. The type of an object may be statically
determined, or may vary dynamically on the basis of a
predicate that defines subtype membership. As the attri- Fig. I. Example objects of type Load_Module and Module.

bute values of an object change, the object may meet or
fail to meet the criteria for inclusion in a particular sub-
type and hence be moved up and/or down in the type hi- jects. The details of how an object is implemented. such
erarchy. as its exact type. its storage structure, or how it derives

In addition to an internal structure defined by attribute data, are all encapsulated within the object and hidden
values objects may be connected recursively by typed and from the objects related to it. For example. in Fig. I we
directed relationships to form higher level or abstract ob- could transparently substitute an object of type New
jects. Thus. Cactis is a semantic model, similar to the Module for an object of type Module so long as the same
entity-relationship model [7] and the semantic data model external interface is maintained (i.e., the same connecting
[181. It is actually based on the insyde model [301. In relationship type is used). This means that an object can
semantic modeling terminology [241, relationships are be transparently related to an object of a type that did not
used to construct aggregations. or complex objects. Un- even exist then the object was created. This feature is cru-
like conventional record-oriented database objects. aggre- cial for dynamically evolving systems like software en-
gations may have properties (relationships) which are not vironments.
printable. 2) Local Behavior: The Cactis data model is also an

An example type would be a Load Module as shown object-oriented model, in the behavioral sense. This
by example data objects. in Fig. 1. Simplistically, a means that individual objects in the database have embed-
Load Module might be modeled as consisting of objects ded within them the means to respond to changes else-
with one multivalued relationship. called Modules, which where in the database.
relates objects of type Load_Module to objects of type In a Cactis database. each object is an encapsulation of
Module. Modules themselves would be aggregations re- data along with a mechanism for implementing local be-
lated to other Modules. LoadModule might also have havior involving the data. The specific mechanism used
three attributes, one giving its name, another the date it in Cactis to support local behavior is that of derived at-
was last formed, and a third giving the name of a file tributes. This mechanism allows attributes to be derived
containing the actual object code. An example subtype by a function of other local attributes of the object as well
might be Recent Load Modules. which would include of as attribute values imported into the object over relation-
all load modules less than. say a week old. ships. As a consequence, the interface to an object con-

In addition to the subtyping and aggregation capabili- sists of its relationships and the values imported and ex-
ties. it is important to point out a fundamental difference ported across those relationships. An object can be seen
between the Cactis data model and conventional models, as expecting certain types of values from its environment,
This difference concerns the nature of relationships. In a and providing other values in return. The data language
conventional model the type of a relationship uniquely de- of Cactis [211 allows derivation functions to be con-
tines the types of the objects which are related. In the structed using all the arithmetic and logical operators
Cactis data model this is not true. A relationship only de- found in the C language. plus several conditional and it-
tines the type. direction. and number of values that flow eration constructs. Because of this flexibility, very corn-
between objects (see the next section on local behavior). plex behavior can be encapsulated in a Cactis object. The
Consequently. the exact type of the object at the other end only resmction on these functions is that they may not
of a relz'tonship is not known until the relationship is have side effects (must be applicative). Examples of such
traversed. This allows the types of objects to change or behavior include such things as prioritizing bug report ob-
be extended dynamically without affecting related ob- jects on the basis of deadlines derived from scheduling
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object as discussed in Section II-A. or update of dataflow rithms are either not sui:a-'le for use in a mass-storage
analysis information as described in Section [IH-B. environment. or do not harnuie arbitrary attributed graphs.

Another system which relates derived attributes in a con-
B. The Implementation of Cacris ventional attributed tree to a relations in a relational da-

In this section we focus on algorithms used by Cactis tabase is discussed in [191. Finally. a system for standard
to manage derived data, as these are the features of the incremental attribute evaluation using a variant of the b
system which most heavily influence its ability to manage standard optimal algorithm in a distributed environment
software databases. For further information about the is discussed in [26].
Cactis implementation, see [231. The Cactis update algorithm is optimal in the amortized

1) Derived Subtypes: In a Cactis database, the subtyp- set of attributes recomputed after a change. but somewhat
ing mechanism has the potential of creating a large amount less than optimal in total overhead. To be specific, when
of derived information. In order to prevent a storage prob- we amortize over any complete transaction sequence. the
lem from occurring, it is possible to allow Cactis to de- set of attribute reevaluations charged to a particular trans-
cide when a subtype should be materialized. The system action is the set of attributes for which both of the follow-
supports an option which allows it to be self-adaptive, in ing two conditions hold. 1) Either the computed value
that it continuously monitors itself to determine which would change if evaluated, or the computed value of at
subtypes should-be reevaluated. Cactis will keep track of least one attribute directly related to that attribute would
the usage history of each subtype. and then use this in- change value (this is the minimum set of attributes to
formation to decide when to materialize a subtype. If this evaluate if all attributes must be updated after each trans-
option is chosen. Cactis will only materialize a subtype action). 2) The attribute's value will eventually be used.
under one of two conditions: if the subtype is queried. or That is, the attribute will be referenced at least once be-
if usage statistics indicate that it is cost-effective to ma- fore either the end of the transaction sequence or the point
terialize it. This allows the system to use less space and where its value is overwritten by a different value. This
still provide quick access to certain subtypes. is an amortized bound. Consequently, some transactions

Under this option, Cactis keeps an exponentially de- may perform more work. but as a consequence other
caying average (by powers of 2) of the how many times transactions will perform less work. A complete analysis
each subtype has been referenced during the previous da- including complexity of overhead computations can be
tabase sessions. This is multiplied by the number of ob- found in [22].
jects which must be reevaluated for subtype inclusion Because the algorithm is lazy, it can in fact outperform
(which can be derived from the object-level dependency the optimal algorithm for trees in many cases. Unlike the
information), in order to give a weighted factor. These standard optimal algorithm which assumes that all attri-
weighted factors give an indication of which subtypes are butes must be up to date after each transaction, this al-
highly volatile and are commonly referenced. gorithm only updates attributes which must be evaluatea

Subtypes with large weighted factors are materialized in order to ensure all declared constraints are met and all
frequently, so that the system is able to anticipate query user requested values are available. The computation ot
needs. This minimizes the delay involved in waiting for attribute values which are not directly or indirectly ob-
a response to examine a subtype. but does not materialize servable from outside the system is deferred. This can re-
infrequently needed subtypes that are not volatile. The suit in very significant savings. Even without these say-
database designer may provide a parameter to decide how ings. the algorithm vastly outperforms conventional
large a subtype's weighted cost factor must be to mate- trigger based systems [41, since its performance is never
rialize it. This parameter is chosen with respect to the worse than linear, whereas triggers can exhibit exponen-
available storage. We. note that this technique assumes a tial behavior in many cases. This linear behavior is crucial
certain amount of locality of reference with respect to in applications such as software environments where long
subtype examination, chains of attribute dependencies are required.

2) Derived Attributes: The mechanism used to imple- The Cactis incremental update algorithm works in two
ment derived attributes is efficient in time and space. It is phases. The first phase determines what derived data is
based loosely on recent work on incremental attribute potentially affected by a change. and the second phasi.
evaluation [121. [43] and is philosophically similar to the reevaluates the subset of that data which must actually be
mechanism used to maintain subtypes. In particular. the recomputed. During the first phase, data which might be
data managed by Cactis can be seen as an attributed graph. directly or indirectly affected by a change is marked out-
Such attributed graphs are a generalization of the attrib- of-date using a traversal over a graph which represents the
uted trees used for syntax directed and language specific dependencies between attributes at the data level. During
editors [441. Unfortunately, the optimal incremental up- this traversal, certain attributes will be encountered whic!h
date algorithm developed for this process 1421 cannot be are designated important. These are the attributes which
extended to attributed graphs. Instead a new incremental the system must ensure always have correct values
update algorithm has been developed for use with Catis. Whenever an important attribute is marked out-of date in

Other aigonthms for incremental update of attributed the first phase of the algorithm. it is remembered for the
graphs are discussed in [ I. [271. However, these algo- second phase. The second phase of the algorithm recur-

i
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sively recomputes the proper value of each important but sions within a program, and then finally, across multiple
out-of-date attribute based on the attribute evaluation rule programs.
attached to the attribute. Since the second phase operates There have been numerous research projects aimed at
in a demand driven way, it can be lazy. Consequently, it supporting derived information in software environments.
avoids evaluating attributes which are not actually needed. Notable examples are the work in version control [101,
As a result, only the optimal set of attributes is actually [401. [471, [491 and bug tracking [3 1]. Compared to these
recomputed after a change (although nonoptimal overhead efforts, our research differs significantly in its goals. We
is incurred to find these attributes). are not primarily concerned with defining the functional

In addition to efficient algorithmic techniques, the Cac- requirements and developing the capabilities of these fa-
tis system also uses self-adaptive heuristic techniques to cilities. Rather, we are concerned with the ability of cur-
improve disk access performance over time. Statistics rent database technology to provide useful support for
about past behavior are collected to be used as a predictor such systems. In particular, we focus on the application
of future behavior. These statistics are used to cluster data of object-oriented data models to the support of scftware
which is frequently accessed. This results in significant development, and on the efficient maintenance of disk-
performance gains. In addition, these statistics are used based data. In sum, our work is an attempt to provide
to schedule work to be done in an efficient manner. As effective, underlying database support for software engi-
described above, the incremental attribute evaluation at- neering tools.
gorithm is a pair of graph traversals. Because of the func- .6
tional nature of the derivation rules used in Cactis. these A. Programming in the Large
traversals can proceed in a number of different orders.
They could be done depth-first. breadth-first. or, as in Objects used by the Cactis system are declared using
Cactis. in an order which past behavior indicates will be the Cactis data language. In this language one may de-
efficient. In general the system schedules work which is clare both object and relationship classes. A relationship
expected to incur the least new disk accesses first. This class declaration provides names and types for the values
preserves or frees buffer space for later work. thereby at- that flow between related objects and indicates the direc-
tempting to reduce disk accesses due to thrashing. tion of this flow. An object class provides names and types

Extensive performance tests have been performed on for a set of attribute values and provides the name. class.
Cactis [23). These tests indicate the self-adaptive cluster- and direction of each potential relationship.
ing and scheduling can save as much as 60 percent of disk As a simple example. we might wish to create objects
accesses for databases that contain extensive amounts of for use in a simple bug/fix tracking system. Fig. 2 shows
derived data. Even for databases with little derived infor- the declarations we might use for such objects. Here sev-
mation. a 5 or 10 percent savings in disk accesses is usu- eral relationship classes have been defined. These include
ally realized. bug_fix. which will relate a bugreport to a fix report.

modulebug which will relate a bug_report to a module.
II. SUPPORTING SOFTWARE ENVIRONMENTS and several others. Notice that, in order to give direction

to relationships. one end of the relationship is called a
In this section we describe on-going experiments in- plug, and the other a socket. Any object which possesses

volving Cactis. Various aspects uf a software environ- a plug of a given class may be related to any object which
ment are being coded as Cactis applications. We are at- possesses a socket of that class. In some cases. relation-
tempting to construct these tools in a uniform, integrated ships have been declared as Multi Plug or Multi Socket.
fashion. We feel that the data model supported by Cactis This indicates a one-to-many relationship where multiple
is a natural mechanism for specifying the sorts of data plugs (sockets) may attach to a single socket (plug). Re-
needed by a software environment. Our hope is that our lationships also allow values to flow between objects. In
expenments will serve three purposes. First. we hope to the case of a bugfix relationship, one Boolean value
validate our claim. Second. we plan to illustrate that Cac- (isjix . is transmitted from the plug end of the relation-
is can support software environment data efficiently. And ship to .he socket end. In cases where a socket of class

finally, we will evolve the implementation of our DBMS bug_fix is left unconnected. a value of false is transmitted
according to the experimental results we obtain. Clearly. by default.
we will discover significant ways in which Cactis can be A bugreport object can be related to a number of other
improved, objects as indicated by the relationships section of the

Users of a software environment must perform many declaration. A bugreport is related to the module which
daa manipulations that. unlike those of conventional da- the bug occurs in by the inmodule relationship. It may
tabase applications, involve complex derived data. Cactis also be related to a fix report via the fixed by relation-
provides a unified framework for manipulating derived in- ship, to a test result indicating the symptom via the symp-
formation in a software environment at multiple levels of tom relationship. and finally, to objects representing proj-
granularity. In this section. we illustrate this capability by ect personnel via the reportedby and assigned-to
discussing first derived data at the level of modules and relationships. Finally, a bugreport object has two attn-
whole programs. then at the level of statements or expres- butes: report words which contains a textual descnption

r -
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enhance its utility. The example uses derived data inReltaionship Class Oug fix

"rrani-ins very limited way by computing the is-fixed attrbute o
s.jlxed: booean To Socket. Deftui-Fase: objects of type bug report. In this case. a flxreport ob- '

End Relationship: ject transmits this value across a bug lix relationship to.a

Relationship Clas modul_;pu Multi Plug End Reiationship: bugreport object. When no such relationship exists.
RaionshipClasu to est-resutt Multi Plug End Relationship; value of false is supplied by default.
Relationship Clam to.rsotn Multi Plug End Relationship;
Relationship Class workjo.person Multi SodcetEnd Relationship; A more interesting, but still simple. example of denveL

data is given in Fig. 3. Here we have extended our ex
Object Clans bugjeport

Reiationships ample to incorporate scheduling information. A system o
in_rnouuiO module oug Plug; objects is used to schedule work to be done on the basi-
symptom :to tes result Plug:

fixedby -bfix-Soeu: of milestones. A milestone object is given a target com-
reortedby to.person Plug: pletion date and derives an expected completion data from
assigneed.to :woflto_person Socket:

Attribut the expected completion date of other milestones it de
reportwolds :text strng- pends on. along with an estimate of time required for work15 fixed 0 Dolean:Rufes on the modules local tz: the milestone. As a consequence.
Isjfixed :- fixad by .SJixed: a milestone object may automatically derive an atnbute

End Object: which indicates how late it is expected to be. This value
Object Clan fix report can then be used.to derive a priority to be placed on wor

Reigitionships
fixes bug ix Plug, for each module (or optionally this could be done man
fixed by :to..porson Plug. ually with a scheduling tool). This priority can then b
cttue o..deia Plu6 transmitted along the to pri module relationship definev
reooiwomrs texstng: in ?ig. 3 to a pribug_ report object.

tixes.isfixed : True; Note that the pri bug report class is a subtype of
End bject: bugreport. This indicates that it inherits all the relation-

ships and attributes of bugreport. In addition. we have
Fig. 2. Objects for bug/ix tracking ,ysrem. added a new relationship and two new attrbutes. The se-

verity attribute now allows the bug to be weighted ac-
of the bug, and is fixed which indicates if the bug has cording to how severe it is. The bugpriority attribute
been corrected. computes a priority for the bug on the basis of the priont\

Even though the definitions given in Fig. 2 are oversim- computed for (or assigned to) the relevant module alonL±
plified. they can be used to illustrate several important with the severity of the bug. Note that this computation
capabilities of the Cactis system. First. we can see from can be done in a lazy fashion. If the bug has already beer.
this example that diverse but interelated data from differ- fixed, a priority of 0 is auLomatically defined, and no val-
ent aspects of the development process can be unified in ues need to compute a module priority are requested or
a single data model. In our example. three different kinds recomputed. This is an example of where a computation
of data. management data involving project personnel. involving a long chain of dependencies can be handlec
data representing actual program code. and data repre- etficiently and automatically when needed. but is avoideL
senting test results. have been integrated in order to im- when it is not needed. As an additional feature, the value
plement a fourth aspect of the environment, a bug/fix assigned to the bugpriority attribute could also be usec
tracking system. to define inclusion in a subtype. For example. one coulc

Second. we note that the Cactis system is able to deal define the subtype hotbug as being all objects of the
with large or unstructured types maintained by external pri bug report class which have a bugpriority greater
tools. For example. the report-words attributes of both than some threshold. The use of this kind of derived sub-
bug_,eports and fix reports is declared to be of type type could make it easier to retrieve specific information
text string. Because most of the details of type imple- regarding trouble spots in an ongoing project.
mentation are hidden from the system. this type could be An important feature of the Cactis system is extensibil-
implemented as an internal identifier which can be used ity. The addition of new functionality to an object doe,
by an external ile-based string package to retrieve a large not require that existing tools be modified. For example.
stnng from a special string flile. Only the evaluation rules any tool which uses a bugreport object can also trans-
that deal with this type need be aware of its actual imple- parently use a pribugreport object. The object onenteu
mentation. This ability of integrating private data man- nature of the Cactis data model allows the imolementation
aged by other tools is very important to the flexibility of details of an object to be hidden. and allows a compatible
a software environment. In particular. this capability is exte"nal interface to be r ":ained when classes are ex-
essential for dealing with object files or load modules. tended. Further. since relationships are defined on the ba-
This data typically must be maintained and controlled by sis of the values transmitted into and out of objects rathe:
host operating system tools such as linkers and loaders, than on the basis of object classes themselves, a sinile

Finally. we can see how derived data is used. and how object can be replaced by a group of related objects. One
the extensibility and subtyping capabilities of the system must only provide a compatible set of plugs and sockets.
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Obliest Clam milestone Reilaop 1-a Sff _,daow
Reionship Travmomugiarst

clahersCIA milesten Top Plugu&r v: ru on axi tram sint
aepen on: mlestne do Plug sm varm To Sock@$. vars .v on .in, to SIR" I

Use vatsa To Socke v atss seem iinstrm
Attibutin iWu vaf set To ackt; vats not sot on some paw tifun stfim-

rgetIcomgi. local wotit. expcomfi, lateness: :ime: Ens AISO~bP
Rule Retaasm*,p Class eor-oaalowo

axocomoi: Teumslateness :. exp compI - targt~comol: use: vatset To Socket; r vats ussod ii em,
End Ralauasuh;

End Object:
OblenClam f cofip oivveo oledusan 01*w 'IRelationshsip Clan tO-opfljfle Ralausem.u

Transauts .en stn aaMw is
moduistjnomy :scnajpnonty To Plug. Defauit =0: Attribues

Miulti Plug UVEIN varset: -vats tiue on sixty to 51015 1
End Reationhip;IVEOUT vatse: '* vats live on exit trarn sims/*

UVEOUT - aetivctObject Class Qf~bmug.rSoctt oarent aven -UVEIN:
Subtype of bug reoofl: End Object;
Reltionshtips

n pn mod o_10,njrnoduie Plug; Fig. -&. Declarationts for liveness analysis.

ougpnorily scrildjponty; -:

Ruseventy = bugseventy;
Duq..pnonty Object Clam assign stint

-If is fixed Then 0 /* <slmb> :.0 :. xpra91(f.'
Else asssgn..pnornty(in.,pn.,mod.module-pnoty. seventy); Subtype of dl. ot";

End Object: Relationisips________________________________________asn-exor :exprdaaflow Socket: 1expression assignedf'
Attributes

Fig. 3. Extended bugi fix tracking objects. id : vand: / var assigned to1
Ruls

B. Programming in the Small . UVEIN :. (LlVEOUT - (id)) Q asn..expr.use:
parem.use :=asnexor.use:

In the previous section. examples of manipulating de- parent.thru :.al vale - Jidl;
End Object:rived data at the level of modules and at the level of a

schedule for a whole project were considered. One of the Object Clan tfstint
ipratfeatures of the Cactis data model is that it can r sm>:.IF <exprm THEN -:stint lisb ELSE <stnltjist> END.!1

imotatSubty~pe of dt ob;
also deal with very fine grained structures using the very Relatoonships

sam mchnim.com expr exordcatallow Socket: /- conditional expr
sames mehns.stmtdcatalow Socket: r then clause .1

To illustrate this. Figs. 4. 5. and 6 define a series of stmt2 :stins-datafl:w socket: rels. ciaus: .1
ojcsfrrepresenting programs as abstract syntax trees. RulesN: odep~s tit~ient tmioI These sorts of structures are typical of the tree structures parent.us. 'condexpr.use ustml.use uslins2.use:

* parent.thnJ :-slinti .tflr u stmt2.thrtj:* used as intermediate code for a compiler [48] or for rep- sm~ie~ =LVOT

resenting programs ir a ;yntax directed editor [461. In this stmt2.iveout :=LIVEOUIT;

case we have modeled a simple language con taining se- End Object:

quences of assigrnments. while loops, and !l-then-else Objecs-Classwnile~.stmt
* statements. These are modeled by the object classes as- 1*<tt ::- WHILE <exprm 00 <Stinsjist>, END 'I

£ Subtype of dt..ooj:
sign stint. while stint, if stint. sequence. and emp- Relationsips

* tstit. n ddiion a umer f ojec casss fr rp-cOndexPr Oxor-dalaflow Socket: /conditional expr 'I
tytME Inaddtio. anumerof bjet casss fr rp-stznt stint dataflow Socket:; loop body I1

resenting expressions and other constructs would be Rues
required but are not shown. These objects can be corn- LIVEIN :. cond-exor.use u stmil.liven Q UVEOUT;
bined to form trees using the stmnt datalow and expr da- parem.inru c-alovats: tiiu

r aflow relationships shown in Fig. 4. strml.liveout :-cond~exor.use Q st£.use QLIVEOUT
* End Object:*Going beyond objects which simply represent pro-

Lyrains. we have also included attributes and evaluation Fig. 3. Classes for computing liveness (part 1).
* rules which can derive important information about the

program aucomatically (these object defiiftions are [38]. For example. if a local variable of a procedure is
adapted from an attnbue grammar given in [ 14]). In this live at the start of the procedure. then there is a potential

* case we compute dataflow infor-mation which Indicates the execution path along which the variable may be used be-
* liveness of variables in the progrmm .A variable is said to fore it is assigned a value. This indicates a potential

be live at a given program point if its value could be used anomaly in the code. This anomaly information can then
Liat some point later in the program for some potential ex- be used by other parts of the system to derive other infor-
ecution of the program. Variables whose valt" at a given mation. However, the details of how this information is
point in a program cannot be used later in the program are used is hidden. Consequently. it is possible to add new
said to be dead. This kind of information can be used to objects or new tools which use this information without

detect potential errors in a program or procedure (31, (161, reimpleinenting existing objects.

.......... ...... ..... ....
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ecations. In general. the rules given compute the thru a:
Object ciiSnct use sets on the basis of their children and local inform.r ci" tlis l : ili % , S* ltli ,

Subtype of w.o ; tion. then. given a value tor LIVEOUT from their parer
Rel:dooe.ups are able to compute the value of LIVEIN. The exactsultl : stmt lataflow socet: r*flra otsl~o nce*"

simt2 : suMna iw Socket: rest of seQuenCe 'I dering of these computations is only partially define
Rul Within this partial order. computations are conceptual

LVEIN :. stmil .livan:
pmem.uS. :. .ust Q (SVm2.ua ' stmil.mhtu): performed concurrently. At present, the computations a
pareftlin :. sumli.t ru stmt2.thru. performed in an order expected to minimize disk accesstmitl.liveil : strvivan: 0sit1itl.veoul : LIVEOUT; The system is also being extended so that these comp

End Object: tations can actually be performed in parallel as discuss.

Object CiM emptyst it in Section IV.
/- -csmt Jlst ::. _M F1I The computations we have defined in Figs. 4. 5. andSubtypwo( O-..o;Rolla do not involve cyclic dependencies. However, most d

LIVEIN :, LVEOUT; taflow problems are more easily characterized as the s,parent.u :,,invarls: lution to a fixed point problem and hence involve cycl
End Object: attribute dependencies. The solution of such fixed por

p -e problems using attribute grammars is considered in [1-Fig. 6. Classes forcomputing liveness (part 2). In this work. an appropriate class of circular, but we
defined attribute grammars is defined, and simple con.

In order to compute liveness information, we introduce tions are stated for guaranteeing termination of the r
two attributes, LVEIN and LVEOUT which represent the suiting cyclic attribute computations. Roughly speakin
set of variables which are live on entry to and exit from a these conditions require that the evaluation functions :
statement, respectively. These attributes are defined as a volved be monotonic. and that the attributes involv
part of the df.obj class given in Fig. 4. In addition, we come from finite domains. Under these conditions. a le:
also compute but do not store the values of two other sets: fixed point solution can always be found by successix
use which indicates the variables used before they are approximation (i.e.. iteration until convergence). The.
reassigned in a statement, and thr which indicates the set conditions extend straightforwardly to the attribut
of variables which are not assigned along some potential graphs used by the Cactis system.
path through the statement. These sets are transmitted be- The second phase of the Cactis incremental update
tween objects using the stmtdataflow relationship for gorithm can be modified slightly to handle cyclic but we
statements and the expr dataflow relationship for expres- defined attribute systems. While a value is being reevz

sions (here we assume expressions have no side effects). uated in the evaluation phase. it is given a special in-pro
The liveness computation is an example of a backward ress mark. If such a mark is encountered during evalu

dataflow problem. That is. it proceeds in the direction op- tion, a cycle exists. Such marks are used to identify -
posite to control flow. In this case we use an initial value strongly connected components of the dependency erap
of LIVEOUT at the end of a procedure to calculate the These can then be used to effectively compute an iterati,
value of LIVEIN at the beginning of the procedure along solution to the fixed point problem. A related algonth
with LIVEOUT and LIVEIN at each point in between, for incremental evaluation of fixed points in convention:
For example. the variables live before an assignment attribute grammars is also studied in (25]. However. th
statement include all the variables used in the expression algorithm is based on the optimal update algorithm t.
being assigned. along with all the variables live after the trees and does not extend to attributed graphs.
assignment except the variable assigned to. Translating It should be noted that the Cactis system may not pe
this into set notation we obtain the assign stmt evaluation form well enough in some situations to support all aspec
rule given in Fig. 5: of programming in the small in a practical manner. In pa

ticular. it is currently unknown if interactive edit-time s,
LIVEIN := (LIVEOUT - (id}) U asn-expr.use: mantic tests would really be practical. If related progra

Similarly. the values live before a while loop include those components are spread across many disk blocks andi
Simiarl, te vlue lie bfor a hil lop iclue tose termixed with other objects. the time to simply fetch

used in the loop test expression and those live at the start emxdwtohrobcs.heietoiplfth
of the body of the loop, as well as all of those live after the required disk blocks would be too long in itself. Ho
ofthe ody (si the loop ay wexecut as zeo tims). Isetr ever. if the objects in question were placed together
the loop (since the loop may execute zero times. In set disk blocks, and their total size was close to that whir
notation: would fit in memory, adequate performance could proi

LIVEIN := cond expr.use U stmtl.livein ably be achieved. We are currently exploring mechanist
U LIVEOUT; for clustering of data which should allow good perimance for programming in the small problems. Howevc

In the examples. we have used set notation for clarity, only further experiments with the system will indica.
In the real specification used by the Cactis system this whether the system will actually be fast enough to suppi,
would be replaced by function calls implementing set op- this kind of problem.
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C. Version Retrieval A
As we have seen in the two previous subsections, the

mechanisms of Cactis may be used to manipulate derived

data at both the level of single programs and at the level
statements or expression within a program. In a software
environment, it is also necessary to manage groups of

programs and metaobjects which are responsible for man-
aging and organizing other objects. There are several con-
texts in which this is done. For example, an engineer may
need to differentiate different versions of a related set of Fig. 7. Placing data on different hosts.

modules. The Cactis data model allows objects to be cre-
ated which group together such a set of modules and form
the basis for a version control tool which would allow ment. Properties of the Cactis data model make this tran-

groups of modules to be checked out. modified and sition particularly easy. Recall that the system only defines

checked in as a new version. In such a system, different a partial order on computations and already uses an un-

versions of a program are normally not explicitly stored. predictable evaluation order. To distribute the system. it

but rather derived from a current version through some is easy to (conceptually) insert a pair of special commu-
delta mechanism. In the Cactis system the delta infor- nication objects between any two related objects as shown

mation needed to recover old versions can be compact, in Fig. 7. Because the interface between two related ob-

and can itself be modeled as a set of objects. Because of jects consists solely of the type and number of values

the nature of the data model used, the delta mechanism transmitted across the relationship, the actual transmis-
can also be efficient and straightforward to implement. sion medium, whether local to a single machine or across

Because a single change to a Cactis data object can a network, is transparent. The only modification to the

cause derivations of new data arbitrarily far from the point sequential evaluation algorithm that is needed is synchro-

of direct change, it seems that a delta mechanism would nization between the first and second phases. The entire

be difficult to implement. This is not the case. To under- first phase must be complete before any computations in
stand why a Cactis supported delta mechanism can in fact the second phase may begin. The existing concurrency
be very simple. we can make a simple observation. Be- control system will work in both the centralized and dis-
cause all attribute evaluation rules are functional in na- tributed systems.
ture. if a user modifies an object by changing an attribute A further advantage of the Cactis data model is that it
value, the entire system can be restored to its original state will be able to automatically manage replication of data
simply by restoring the old value of the attribute. The in the distributed environment. With some small changes
same mechanism which automatically derives new data to the incremental update algorithm, replicated copies of

based on changes can also be used to automatically un- data can be treated as a form of derived data. Since the
derive those changes. Thisobservationalsoextendstostruc- incremental update algorithm is lazy, this system will
tural changes as well as multiple changes made together. amount to lazy replacement of replicated copies. with all
Even though a single change may have wide ranging ef- book keeping and coordination handled automatically by
fects in a database, only the data directly changed by the the evaluation system.
user needs to be stored in order to reverse those effects. Finally, due to the large, complex nature of derived data
This allows a very straightforward undo mechanism that found in software environments, a software database must

can be used to reverse changes within a session, regard- support unusual forms of transaction specification. An-
less of how the changes were done. Consequently, one other direction of current research is support for these un-
need not build an undo mechanism into each tool, but can usual requirements-particularly support for long and
use the general mechanism provided by the system. In nested transactions. Typically. a designer will checkout a
addition. this same capability can also provide an efficient group of modules, work on them, and check them back
delta mechanism by keeping objects representing edit op- in. This may entail a long interactive database transac-
erations and old values. tion, during which the designer works on local versions

of the modules. They would then be checked back in as
IV. DIRECTIONS new versions. and modules and object code may be formed

Cactis is an operational, multiuser DBMS. It consists which use them. Clearly. database transactions in a soft-
of about 70 000 lines of C code. and runs in the Berkeley ware environment are typically longer than standard.
UNIX environment. The system currently only provides business-oriented transactions. They are also more com-
centralized storage. but supports concurrent access by plex. tending to spawn subtransactions which perform
multiple users via a timestamping concurrency control subtasks. such as compiling a program or relinking a load
technique. module. Software environment databases therefore re-

The system is currently being extended from the current quire very dependable rollback mechanisms. Again, the
centralized implementation to a distributed implementa- simple mechanisms described in the last section for undo
tion suitable for use in a distributed workstation environ- can be used to perform this rollback.
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Long transactions may also necessitate more powerful niques developed for main memory databases [341 m
and flexible constraint mechanisms than are typically prove useful. Information about the depth and breadtr.
found in conventional database systems. Constraints can dependency graphs among derived attributes, the patt.
themselves be described as a form of derived data. In a of repetition among dataoase sessions, and the percent
software application, designers may want the capability of set-oriented versus non-set-oriented database opt
to specify complex constraints. An exar'?!e would be that tions will help us determine the effectiveness of our c!
the versions which make up a load module be compatible tering and scheduling algorithms.
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Abstract

Cactis is an object-oriented, multi-user DBMS developed at the University of
Colorado. The system supports functionally-defined data and uses techniques based on
attributed graphs to optimize the maintenance of functionally-defined data.

The implementation is self-adaptive in that the physical organization and the update
algorithms dynamically change in order to reduce disk access. The system is also con-
current. At any given time there are some number of computations that must be per-
formed to bring the database up to date; these computations are scheduled independently
and performed when the expected cost to do so is minimal. The DBMS runs in the
Unix/C Sun workstation environment.

Cactis is designed to support applications which require rich data modeling capabili-
ties and the ability to specify functionally-defined data, but which also demand good per-
formance. Specifically, Cactis is intended for use in the support of such applications as
VLSI and PCB design, and softwme environments.

1. Introduction

Cactis is an object-oriented DBMS which supports a wide class of derived informa-

tion - dam which is computed from functions. In Cactis, a database object can have both

Ti work was suppoted in pan by ONR under conract number N00014-86-K-0054. in pan by NSF ,4ldr gam DMC-
I505164. and in pan by Hawnle Padtid tunder the Amercn Elecunia Assoctauar Faaulty Deve"opmn- Pmgrrm.
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attributes and integrity constraints which are functionally-defined. Thus, the system is

useful for automatically maintaining data which would normally have to be derived by an

application program. As an example, a business database might keep track of objects

called widgets. Each of these objects might have an attribute which is a pricing function

that derives the selling cost of a widget in terms of the cost of its parts and the labor to

put it together. There might be a constraint that says one sort of widget can never cost

more than twice another sort of widget. In each of these cases, the Cactis system would

automatically recompute derived values whenever necessary, and enforce constraints

whenever updates are made.

There are two issues involved in supporting functionally-defined data: the necessary

conceptual modeling capabilities of the DBMS and the physical modeling techniques

required to implement this model efficiently. In the case of the Cactis system, the con-

ceptual and physical models used by the database are identical. Cactis uses an attributed

graph formalism which generalizes attribute grammars [24,25] and incremental attribute

evaluation techniques [12,35] used in compilers and syntax directed editors. In order to

make the system effective in terms of minimizing I/O, it has been constructed using self-

adaptive and concurrent techniques.

The Cactis data model provides a useful and simple formalism for describing

derived information. This simple formalism has in turn lead to a simple and straightfor-

ward implementation strategy. Indeed the authors have found that this formalism allowed

us to construct a large system very quickly. The system was built by a team of twelve

students in about a year, with the majority of the code being written by three of them.

2i
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The authors further discovered that the physical dam model used was conducive to a

concurrent implementation. At any point in time, the database is viewed as containing

som number of pending computations that must be performed in order to keep derived

dam up to date. These computations may be generated by a number of transactions exe-

cuting concurrently or, more often, may be the result of multiple subcomputauions needed

for a single transaction. Cactis is also self-adaptive, in that the system responds to usage

patterns in two ways. First, th .Cactis scheduler dynamically selects the next pending

computations to perform by deciding which one will provide the best expected perfor-

mance. The criteria for selecting the next computation may be that the result is required

by a user or that the data objects required to perform the update can be obtained with lit-

de TIO.

The second self-adaptive technique, which works hand-in-hand with the scheduler,

is the clusterer. This subsystem is run off-line and periodically reblocks the database

according to the way in which data is historically accessed. The cluserer places two

objects near each other if one is commonly used to derive the other. Thus, when the

scheduler selects the next pending computation, the clusterer will have already minim-

ized the 110 effort involved in performing the update.

Cactis was designed with specific sorts of data in mind. For example, complex

engineering data is seen as a natural application. In particular, Cactis has been studied as

a foundation for the support of software environments. A software environment is an

application which requires the management of highly interconnected data. Modem

environments attempt to provide a facility for managing the design, construction, testing,

use, and eventual muse of software. One of the most important requirements of a



software environment is providing a central store for managing the myriad of objects

which make up a software project and keeping these objects up to date in the face of the

many changes made over the lifetime of a project.

A number of features of the Cactis system make it conducive to such applications.

First, the system supports the construction of complex dam and type/subtype hierarchies.

This is necessary in order to cleanly model such things as programs, requirement and

design specifications, progress and bug reports, configurations, and documentation which

are representative of the data found in existing and proposed environments, as described

in (11,33]. Next, functionally-defined attributes are also very useful in a software

environment application, as such a system might contain large amounts of derived data in

the form of compilations, cost calculations, and scheduling dependencies. Cactis pro-

vides a. mechanism for constructing derived dam. which, although it supports a smaller

class of derived information than generalized triggers [6], is much more efficient than

triggers. The system also allows the user to extend the type structure, which is useful for

adding new tools to such a system without disturbing existing functionality.

The capability to support complex data and type/subtype hierarchies discussed

above is provided by the subsystem of Cactis, called Sembase, a tool constructed at the

University of Colorado (see [15, 22]). The other three capabilities form a major recent

development effort. A brief preliminary report describing the design of Cactis appems in

(181. The system is now complete and consists of approximately 65,000 lines of C code,

and uses a timestamping concurrency control technique.

4
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2. Related Work

Recently, significant interest has developed in object-oriented database models, and

in models which represent derived information. A large class of such models are com-

monly called semantic models. A complete discussion of such models and their relation-

ship to traditional models may be found in [20,23]. Briefly, traditional database models

support record-like structures and/or inter-record links (e.g., the relational, hierarchical,

and network models). Semantic models support expressive data relationships; a typical

semantic model allows a designer to specify complex objects, and also supports at least

one form of derived relationship, generalization (sometimes called subtyping). With gen-

eralization, one sort of object can be defined as belonging to a subcategory of a larger

category of objects. Semantic models are limited in the sense that they commonly do not

include support of methods which operate on data objects, as is typical in more general-

ized object-oriented models.

For a discussion of a number of research efforts directed at implementing object-

oriented database systems, see [13]. Such systems vary from extensions to the relational

model to handle complex data [41] to database implementations based on the message

passing paradigm of Smalltalk [27,28]. An object-oriented system which uses persistent

programming techniques is described in [21. [9,381 discuss data structures and access

methods used to implement semantic databases. Object-oriented implementations

designed to support extensible databases are described in [3, 8]; these systems are toolkits

which allow the user to tailor data modeling and storage mechanisms of a database sys-

tem. Another extensible system, designed for such applications as engineering, is

described in [29]. There have also been some work in the area of database support for

S



software engineering; see [31, 42, 451.

A common theme running through many of these projects is that an object-oriented

system must be able to support a wide variety of objects and allow attributes of objects to

be derived in terms of other data items in the database. Other researchers have suessed

the importance of derived data in knowledge based databases [26,30,361. Much of the

previous work in this area has come from Al research oriented toward constraint based

programming systems [5].

During the development of the Sembase subsystem of Cactis a couple lessons were

learned. While this project did product a system capable of supporting a wide class of

object-oriented systems, including some forms of derived information, it fell short in two

ways. First of all, only a subset of first order predicate calculus expressions may be used

to manage derived data. Secondly, the code, while very efficient, is tricky and inelegant.

Cactis supports a much wider class of derived information, and does so in a clean

fashion, based on a simple algorithmic model.

In the next Section, the Cactis data model is briefly described, Section 4 considers

how algorithmically efficient incremental update can be performed, and the implementa-

tion of Cactis is discussed in Section 5. Section 6 describes the Cactis data language; the

examples are taken from a software environment application. Section 7 discusses perfor-

mance tests which have been conducted. Finally, Section 8 considers some of the limita-

tions of the system, detam.s the directions this research is currently taking, and provides

conclusions.
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3. The Cactis Data Model

In this section we will first informally introduce and motivate the Cactis data model,

and then introduce a more formal description along with an example.

Informally, the data in a Cactis database consists of a collection of typed objects.

Each object represents some entity modeled in the database, and encapsulates both the

data and the behavior associated with that entity. Objects contain internal (hidden) struc-

ture, and can be related to one another externally by relationships to create external struc-

ture. In conventional object-oriented systems such as Smalltalk [16], the external inter-

face to an object is a set of messages which it can respond to. In a Cactis database the

interface to an object is the set of values that flow into and out of the object across rela-

tionships.

A Cactis schema defines, for each object type, an internal implementation. This

internal implementation defines the values stored within an object, and the constraints

placed on these values. In addition, the schema specifies how these values may be func-

tionally derived from values passed into the object across relationships, and how the

object may derive the values to be passed out of the object across those relationships.

This functional derivation of data values allows objects to respond to their environment.

When a data value imported into an object across a relationship changes value, the inter-

nal implementation of the object may respond by recomputing local data, and by provid-

ing new data which is exported from the object across relationships. This automatic

derivation of data implements the behavior of the object.

An important distinction between Cactis and other high-level models, such as the

predominant semantic models, is that it handles relationships very differently. For exam-



pie., in the Entity-Relationship Model (101, the Semantic Dam Model [17), and the Func-

tional Daa Model [21,371, relationships are defined with types; an object type definition

encompasses the relationships it participates in - including the range types of the given

relationships. This is not true in Cactis, where relationships are typed separately, and the

range type of a relationship does not depend on the domain type.

A further consequence is that a DBMS based on a semantic model is not conducive

to schema restructuring. In order to vary the manner in which two types are connected

via a relationship, one must redefine two types. In Cactis this can be done dynamically,

at run-time, by merely assigning a new relationship to both sets of connectors.

To make these concepts and their implications more concrete, we now introduce a

more formal definition of the model and provide an example in a graphical notation.

Each object in a Cactis database is an instance of a type from a hierarchical typWe

system. Multiple inheritance is supported and resolved at schema definition time. The

type of an object can be either explicitly declared, or chosen dynamically from a family

of subtypes using predicates which are evaluated whenever updates are made. Each type

specifies the internal implementation of a class of objects along with their external inter-

face. The internal implementation of an object indicates a set of typed data values called

attributes that are stored within the object. Currently, attributes may take values from

any type definable in the C programming language.

In addition to attributes, an object's internal implementation specifies how some of

these values may be functionally derived from other values, either within the same

object, or imported across relationships. This specification comes in the form of attribute

evaluation rides attached to attributes. An evaluation rule attached to an attribute



Figure 1. A Simpled Sample Schema.

indicates that the attribute's (observable) value should always be equal to the expression

given in the rule. Attributes which have an evaluation rule attached are called derived

attributes, whereas values which are simply stored are called itarinsic attributes. Attri-

bute evaluation rules are applicative and may not have side effects. Currently, attribute

evaluation rules are expressed in a data language which is compiled into C, and call com-

pute any function expressible in the C language. Finally, the internal implementation of

an object may specify additional constraints on the attributes of an objecL The, c~~.on-

9



suaints provide predicates that are to hold true after every database update. These con-

straints are implemented using normal attribute evaluation rules which return a boolean

value which is the result of evaluating the constraint predicate.

The external interface to an object describes the relationships it may have with other

objects and the way values flow across those relationshi",,. Each relationship is typed

and directed. Type and direction are used to represent semanuc concepts. For example, a

relationship might represent the semantic concept "component-of". Because of the need

for directedness, relationships have two distinct ends which we will call connectors. In

order to distinguish the ends of a of a relationship and hence establish its directedness,

we say that each relationship possesses a black connector, and a white connector. The

external interface for an object consist of a set of connectors which are intended to match

the connectors of a relationship type.

Figure 2. Example Objects

10
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As an example, Figure 1 uses a simplified graphical notation (similar to (1]) to show

three object types: ProjCost, CompCost, and FxedCost, along with one rtlationship

type: CST. (To simplify the graphical presentatio.. we have used only 1:1 relationships.

A more realistic set of objects for this task would use l:many relationships.) ProjCost

objects represent and compute the total estimated cost for a software project as derived

from other objects. A CompCost object automatically computes the esrmared cost of a

part of a project on the basis of a formula encapsulated in the. object, along with the esti-

mates for subparts it is related to. Finally, a Fixed-Cost object represents an estimate

which has been explicitly entered by a user.

Note that, in this example, objects of type ProjCost possesses a black CST connec-

tor, hence they may be related to any object which possesses a. white CST connector, in

this case objects of type Comp_Cost or FixedCost. Similarly, objects of type

CompCost also possess a black CST connector, therefore they may be related to objects

of type CompCost or FixedCost. An important point here is that an object of type

ProjCost cannot know, and does not care, whether it is related to an object of type

CompCost, or type Fixed Cost, or of some type not shown (perhaps even a type that did

not exist when ProjCost was defined). An object of type ProjCost is only concerned

with the values that flow across a CST relationship, not how they are provided. This

allows a Cactis database to be both flexible and extensible while retaining strong typing.

In this case both automatically computed and manually entered cost estimates can be

handled uniformly, and a number of different cost estimating formulas or methods could

all be handled uniformly and transparently.
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To illustrate how actual objects of the types shown in Figure 1 might behave, Figure

2 provides a more detailed view of some sample objects of those types. Here we have

shown not only relationships, but also internal attribute values, the values that flow across

relationships, and the fact that some internal attributes are derived. In this case, a

CompCost object is shown to have three internal attributes: two intrinsic attributes,

and, as shown by the arrows, a derived attribute which computes its value as a function

(not shown) of the intrinsic attributes and the values passed into the object from the out-

side. Similarly, objects of type ProjCost have a single derived attribute, and objects of

type Fixed-Cost have a single inzrinsic attribute.

To see how a Cactis database handles updates, consider what would happen if the

single attribute in the Fixed-Cost object shown were changed. Because of the specific

data level relationships that have been established, changing the FixedCost attribute

indirectly affects both the derived attribute of the middle CompCost object and the

derived attribute of the ProjCost object. When such a change is made, the Cactis sys-

tem is responsible for identifying and performing any indirect updates needed to bring

the system up to date with respect to all attribute evaluation rules. In this case, the sys-

tem must recompute two attributes. Later we will see that, if the results are not imrnmedi-

ately needed, such computations are not performed immediately, but deferred until the

value is actually required. The user also has the option of declaring that an attribute is

important. This indicates that the system is to maintain the correct value for the attribute

at all times. This capability is used, for example, to insure that the attributes computing

the predicate for each constraint are always reevaluated if they could change.

I2
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In this section we have seen an outline of the Cactis data modeL We have seen that

dam is modeled as a set of objects connected by relationships. These objects encapsulate

data and behavior by providing evaluation rules that indicated how some dam is derived

in terms of other data. Looking at this model in a different light, it can be seenas

equivalent to a form of attributed graph. That is, a graph which has its nodes decorated

with attribute values, and for which there is a set of defining attribute evaluation rules

which describe how attributes mnay be derived from other attributes. Consequently, this

model is related to the attribute grammars used in compilers and language dependent edi-

tors. This relationship will point the way to a new incremental update algorithm in the

next section.

4. Efficient Incremental Update

A number of data models have made provisions for functionally derived or active

data which can respond to changes in surrounding data. As a. typical example, the

LOOPS object-oriented programming system [4] provides active data which can invoke a

procedure whenever a data item is accessed. The implementations of active values in

LOOPS, as well as most other systems which provide active or derived data use tech-

niques equivalent to triggers [6] attached to data. While this method is adequate for

sparsely interconnected data, it can present problems for more highly interconnected

data. Since there is no restriction on the kinds of actions performed by triggers, the order

of their firing can change their overall effect. While this allows triggers to be extremely

flexible, it can also become very difficult to keep track of the interrelationships between

triggers. Hence, it is easy for errors involving unforeseen interrelationships to occur, and

much more difficult to predict the behavior of the system under unexpected cir-
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cumsrances.

By contrast, the effects of attribute evaluation computations used in the Cactis sys-

tem ar much easier to isolate and understand. Each dam type in the system can be under-

stood in terms of the the values it transmits out across relationships, the values it expects

to receive across relationships, and the local attributes of the object. This allows the

schema to be designed in a structured fashion and brings with it many of the advantages

of modem structured programming techniques.

Even if we can adequately deal with the unconstrained and unstructured nature of

triggers, they can also be highly inefficient. Figure 3 shows the interrelationships

between several pieces of data. The arcs in the graph represent the fact that a change in

one piece of data invokes a trigger which modifies another piece of data. For example,

modifying the data marked A affects the data items marked B and C. If we choose a

naive ordering for recomputing data values after a change, we may waste a great deal of

work by computing the same data values several times. For example, a simple trigger

mechanism might work recursively, invoking new triggers as soon as data changes.

Figure 3. A System of Dependencies
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However, in our example, this simple scheme would result in recomputing data value I

eight times, once for each path from the original change to the dam item. In fact, only a

few of the many possible orderings of computations does not needlessly recompute some

data values. In this case, a breadth first order is optimal, however, it is easy to construct

graphs where this is not true. Any trigger mechanism which uses a fixed ordering of

some sort (e.g depth first or breadth first) will needlessly recompute some values for

many graphs found in practice. In particular, any graph which contains dependencies

which are not limited to trees or linear chains can cause this behavior. In the worst case

triggers can needlessly recompute an exponential number of values. For example, if a

depth first order is used on an extended graph of the type shown in Figure 3, 0 (2 14)

wasted computations will be performed. On the other hand, the attribute evaluation tech-

nique used in the Cacus system will not evaluate any atribute that is not actually needed,

and will not evaluate any given attribute more than once.

Cacris supports a number of primitives which the data language described in Sec-

tion 6 has been built on top of. These primitives include operations for creating and

deleting objects, creating and deleting relationships between objects, defining predicates

and subtypes, and primitives for retrieving and replacing attribute values.

Whenever these primitives are used to change a database, Cactis must ensure that

all attribute values in the database retain a value which is consistent with the attribute

rules of the system. This requires some sort of attribute evaluation strategy or algorithm.

One approach would be to mcompute all attribute values every time a change is made to

any part of the system. This is clearly too expensive. What is needed is an algorithm for

incremental attribute evaluation, which computes only those attributes whose values

is



change as a. result of a given database modification. This problem also arises in the area

of syntax directed editing systems, so it is not surprising that algorithms exist to solve V

this problem for the attribute grammars used in that application. The most successful of

these algorithms is due to Reps (34]. Reps' algorithm is optimal in the sense that only

attributes whose values actually change are recomputed.

Unfortunately, Reps' algorithm, while optimal for attributed trees, does not extend

directly to the arbitrary graphs used by Cactis. Instead, a new incremental attribute

evaluation algorithm has been designed for Cactis. This new algorithm exhibits perfor-

mance which is similar to Reps' algorithm, but does have an inferior worst case upper

bound on the amount of overhead incurred.

The algorithm works by using a strategy which first determines what work has to be

done, then performs the actual computations. The algorithm uses the dependencies

between attributes. An attribute is dependent on another attribute if that attribute is men-

tioned in its attribute evaluation rule (i.e. is needed to compute the derived value of that

attribute). When the value of an intrinsic attribute is changed, it may cause the attributes

which depend on it to become out of date with respect to their defining attribute evalua-

tion rules. Instead of immediately recomputing these values, we simply mark them as

out-of-date. We then find all attributes which are dependent on these newly out-of-date

attributes, and mark them out-of-date as well.

This process continues until we have marked all affected attributes. During this

process of marking, we determine if each marked attribute is important. Designating an

amibute important indicates that the system is to maintain its correct value at all times.

Important attributes include those explicitly designated as important by the user, and
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those that compute constraint predicates. When we have completed marking attributes

during the first phase of the algorithm, we will have obtained a list of attributes which am

both out-of-date and important. We then use a demand driven algorithm to evaluate

these attributes in a simple recursive manner. The calculation of attribute values which

are not important may be deferred, as they have no immediate affect on the database. If

the user explicitly requests the value of attributes (i.e. makes a query) new computations

of out-of-date attributes may be invoked in order to obtain correct values. A similar

implementation approach using lazy evaluation is described in [7].

We will now consider the efficiency of the attribute evaluation algorithm. We will

do this analysis on the basis of changing a single attribute value, however the results

extend to multiple attribute changes as well as to changes in the structure of the data

graph.

To begin we will define several terms. The relationship of "depends on" defines a

directed graph with attributes labeling nodes. This graph, which we will call

depends on, will have an edge from the node labeled with A to the node labeled with B

if and only if attribute A depenas on attribute B. We define the graph Inverse(g) as sim-

ply the graph g with all the edges reversed. We define a graph Reachable(n,g) as the

subgraph of graph g which is connected to node n (that is which is reachable by follow-

ing edges from node n.) Finally we define the set Nodes(g) to be all the nodes of a graph

g, and the set Edges(g) to be all the edges of a graph g.

For a given attribute A we will define a graph CouldChange(A) which describes

all the attributes that might change value if a new value is assigned to the attribute A.

This graph contains the set of attributes that depend on A either directly or indirectly.
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specifically:

Could Change(A) =Reachable(A, Inverse(depends..on))

In other words the subgraph reachable by following the depends on relationship back-

wards from A.

In addition to the Could-Change graph we can also define a set Change(A,V). This

set will contain all attrbutes which must be reevaluated in order to insure that all affected

attrbutes- have a correct value. More precisely, the set Cbange(A,V) contains all atr-

butes that either 1) require a new value after changing A to V, or 2) are directly derived

fro~m some attibute that requires a new value. Note that Change(A,V) a

Nodes(Could-Change(A)) for all attributes A and values V, and that Change(A,V)=

when the current value of atribute A is already V.

When the value V is assigned to an attibute A in the Cactis atrnibute evaluation

algorithm no atributes other than those in the set Change(A,V) are reevaluated when we

amortz over any transaction sequence'. This is exactly the same set that would have

been reevaluated by Reps' optimal evaluation algorithm.

Reps' algorithm is also optimal in the total overhead incurred in attibute evalua-

tion. Its total overhead in both best and worst cases is limited to 0( 1 Change(A,Vj ).

However, Reps' algorithm uses some special properties of trees to achieve this result.

These properties do not apply to the more general graphs used by the Cactis system

The overhead of the Cactis algorithm is not optimal. In particular its worst case

amortized overhead is:

' A single change may recompute attributes outide the Change(A.V) set. however. the evillatson of Ql such aamibiea must
have been deferred from the Change set of some prwevious transaction. Henc the evaluation of these aunbutei; can be charged to the
aioruz coat function of that previous transacuot.
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04 Nodes(Could Change(A)l +I Edges(Couid_Change(A))

This behavior comes from the mark out-of-date phase of the algorithm which does a

depth first traversal starting from the node A. In the worst case this traversal may visit

the entire Could-Change graph for A hence visiting each node and edge in this graph.

However, this is the worst case behavior. In many real cases this traversal will be cut

short by finding attributes which are already out-of-date. For example if an attribute A

were assigned two different values in a row before updating the system, the second

assignment would only update A and not visit any other attributes and hence incur only

0() overhead. In general the actual performance of the Cactis attribute evaluation algo-

rithm will depend on the attributes involved, particularly on whether some attributes may

remain as out-of-date for long periods of time if they are not important and are not

accessed. Also, if a given attribute is changed as a result of two different primitive

updates to intrinsic attributes, the given attribute will only be reevaluated once (unless of

course, the given attribute has been accessed or used to compute a constraint predicate

before the second primitive update is performed).

In order to support the primitives which break and establish relationships, a process

similar to that used for intrinsic attribute changes is used. When a relationship is broken,

the system determines which derived attributes depend on values that are passed across

the relationship. These attributes are marked out-of-date just as if an intrinsic attribute

had changed. When a relationship is established, the second half of the attribute evalua-

tion algorithm is invoked to evaluate attributes which are out-of-date and important. In

order to ensure that derived attributes can always be given a valid value, the database

ensures that connectors are not left dangling without a matching relationship. If relation-

ships for each connector of an object are not explicitly provided by the transaction, the
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system will automatically provide default values to replace any values what would nor-

mally flow into the object along the missing relationships. As a final note, please notice

that the primitive to delete an object can be treated the same as breaking all relationships

to the object, and the primitive to create an object does not affect attribute evaluation

until relationships are established.

During the evaluation of attributes, certain attributes will compute constraint predi-

cares. After such an attribute -is evaluated, its value is tested. If it evaluates false, a con-

straint violation exists. Under user control, this can either causes the transaction invok-

ing the evaluation to fail and be rolled back or, optionally, a special recovery action asso-

ciated with the constraint can be invoked to attempt to recover from the violation. In

either case, the constraint must be satisfied or the transaction invoking the evaluation will

fail and be rolled back.

5. The Storage Structures and Access Methods of Cactis

We begin our discussion of the implementation of Cactis by describing a straight

forward implementation of the model which does not attempt to optimize disk access.

We will then show how Cactis uses a self-adaptive and concurrent approach to create an

optimized implementation of the model.

In this section we concentrate on the implementation of tie attribute evaluation por-

tion of the Cactis model. This repre:.'nts the vast majority of the code within Cactis. In

the last section we gave an informal presentation of the incremental attribute evaluation

algorithm used by the Cactis data model. In this section we give a more concrete and

specific description.
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The algorithm uses several pieces of information for each amibute in the data,

including:

value - The actual value assigned to the attribute.

outofdate - A boolean value which indicates whether the attribute has been marked

out-of-date.

changetime - An integer dimestamp that indicates when the value was last assigned a
S

new value.

readtime - An integer timestamp that indicates when the value was last used for a

computation or read by the user.

In addition, attribute information that is the same for all data objects of one object type is

stored in the schema. This information includes:

important - A boolean value which indicates if the attibute is designated important.

evaiproc - A procedure which encodes the attribute evaluation rule for the attri-

bute.

dependson - A set of things that this attribute depends on.

The value of the attribute is simply whatever value the attribute currently has. This

value may or may not be correct depending on whether tn, attribute is up to date. The

outofdate flag indicates whether the attribute might be out of date with respect to its

defining attribute evaluation rule. When outofdate is false the attribute will have a

correct value. When outofdate is true the attribute may or may not have a correct value.

It is important to note that the database need not know anything about the internal struc-

ture of the attribute value other than its total size. Knowledge about all other aspects of



the amibute is encapsulated in the evalproc for the attribute. This encapsulation greatly

simplifies the construction of the attribute evaluation system.

The important flag indicates if the attribute is to be considered important. If an

attribute is considered important, the system will ensure that it always has an up to da=

value. In general, the important flag for an attribute within an object of a given type

does not change, hence it is stored in the schema. Occasionally the importance of an attri-

bute should change over time and depend on a predicate. In this case we can introduce a

new attribute which is designated important. The evaluation rule for this new attribute

will evaluate the predicate which determines if the original attribute is to be considered

important. The evaluation rule will then request the correct value of the original attribute

if and only if it is to be considered important (i.e., the predicate evaluates true).

The changetime associated with an attribute gives the timestamp for the last time

the attribute value was changed. This changetime information can be used to avoid

unnecessary attribute evaluations. If the changetime of an attribute being evaluated is

later than the changetimes of all of the attributes it depends on, it need not be

reevaluated nor its changetime modified. If an attribute is reevaluated but does not actu-

ally change value, its changetime can also be left undisturbed. This allows us to avoid

chains of attribute evaluations which do not result in any value changes (although we

must still incur overhead for these attributes). The changetime and readtime of an attri-

bute are used in the concurrency control algorithm discussed in Section 5.4.

The evalproc of the attribute is a procedure which encodes the attribute's evalua-

tion rule. This procedure will request other attribute values that it needs to perform its

evaluation and will compute a new value and changetime for the attribute when needed.
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This procedure is provided by the data definition language compiler on the basis of the

amibute evaluation rule given by the user. Since the evalproc of an attribute of an object

of a given type does not change, it is stored in the schema- The form of the evalproc is a

compiled C function. This currently limits the extent to which dynamic schema changes

can be made without relinking. An improvement which has not yet been implemented

would be to represent an evalproc as a list of machine independent P-codes like those

used to implement some machine dependent compilers [32]. In the later case, these P-

codes would be interpreted rather than executed directly. This will allow new attributes

and evaluation routines to be added while the database is running.

Finally, the dependson set associated with an attribute encodes those things (if any)

that the attribute will need to compute its value. Again, since the dependson set of an

attribute within an object of a particular type does not change, this information is stored

in the schema. Further note that the dependson sets only encode the portion of the

overall dependency graph that is local to a given object type. Traversal of the actual glo-

bal dependency graph is performed by dynamically linking together the appropriate local

dependency subgraphs found in the schema. The global dependency graph is never

explicitly constructed or stored.

As detailed above, a Cactis database must store "overhead" information with each

atribute of each data object. However, since the system is designed to support applica-

tions with large complex objects, th: space for this information may not prove to be

significant in practice. In particular, if 32 bit time stamps are used, this information only

amounts to 65 bits of storage beyond that used by the attribute value itself.
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51. A Naive Evaluation Algorithm

We will now discuss a simple version of the Cactis attribute evaluation algorithm

which is efficient in the number of attributes which are evaluated, but which is naive with

respect to 1/O cost. In the next section we will consider an improved algorithm which

attempts to optimize the amount of 1/0 performed. Recall that the attribute evaluation

algorithm has two phases. An initial "mark out-of-date" phase, and a second phase which

reevaluates attributes as needed. T"he first of these phases is initiated when attibutes are

assigned new values. The routines SetArtrValue and MarkOutOfDate given in Fig-

ure 4 show how this phase is implemented.

Each time an attribute is assigned a new value, all attributes that depend on that

attribute directly or indirectly are marked as out-of-date using the Mark_Out_OLfDate

roilrine, and the changetime for the modified attribute is set to the current virtual time.

An attribute is said to depend on another attribute if it might be needed to evaluate its

value (in other words if it is mentioned in its attribute evaluation rule.) For example if

the attribute A uses the following attribute evaluation rule from the schema:

A := (B + C) * (D - 2);

then the attribute A will depend on attributes B, C, and D.

The MarkOut_Of Dare routine is a simple depth first. marking procedure. The

only special thing that it does is to record on an evaluation is: any attribute which is

designated important. Attributes on this list will be those that are currently both impor-

tant and out-of-date. These are the attributes which the system will be crncerned with in

the second phase of attribute evaluation.
ik
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Procedure SetAttr_Value(
InOut A: Attribute;
In V : Value;
InOut Eval List List of Attribute)

Begin
MarkOut_OfDatekA, Eval_List);
A.value :=V;
A.outofdate := FALSE;
A.chazigetime := NOW; -

End;

Procedure Mark_0ut_Of_Date(
InOut A : Attribute;
InOut Eval List : List of Attributes)

Begin
If Not A.outofdate Then Begin

If A.important Then
Eval_List :--Eval_List II A;

A.outofdate TRUE;
For Each B such that B depends on A Do

Mark-Out_Of_Date(B,EvaList);
End;

End;

Figure 4. "Naive" Attribute Evaluation Routines

As shown here, the Mark_Our_OfDate routine makes no attempt to minimize disk

access costs, and always uses a fixed depth first order of traversa. In the next section we

will consider how we can dynamically choose a traversal orderwhich is most likely to be

efficient in terms of disk access.

The second phase of attribute evaluation algorithm is invoked after a series of attri-

bute changes using the Update-System routine given in Fig=re 5. This routine simply

evaluates each of the attributes on the evaluation list that was collected in the mark out-

of-date phase of attribute evaluation. Each attribute is evaluated by the EvalAttr routine



Procedure Eval_At(InOut A: Atribute) : <Value, ThneStamp>

Begin
I"A.outofdate Then

A.evalproc(A);
Return(<A.value, A.changetime>);

End;

Procedure Update-System(InOut-EvalList : List of Attribute)
Local Var Dummy : <Value,Timestamp>;

Begin
For Each A on Eval_List Do

Dummy := Eval_Am(A);
Eval_List := Empty;

End;

Figure 5. "Naive" Attribute Evaluation Routines

shown in Figure 5. This routine uses the evaproc attached to the atribute to reevaluate it

if it is marked out-of-date, then returns the value and a timestamp indicating when the

value was last changed.

The evaproc attached to each attribute encodes the attribute evaluation rule for the

attribute (if any). These routines are slightly more complex than the attribute evaluation

rule expressions they are derived from because they examine the change time from all

the values they request in order to determine if the attribute computation can be avoided.

However, they follow a very rigid pattern and are easily created by the data definition

language compiler based on the attribute evaluation rules given by the user.

In addition to simple expressions, the attribute evaluation algorithm cin handle con-

ditional expressions. For example, we can have an attribute E whose artribuLe evaluation
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rule is:

E := If B Then F Else 0;

This rule is implemented using an evalproc which is "lazy". That is a routine which only

requests values if they are actually needed. For example, when the attribute B happens to

be true we request the value of attribute F but not attribute G. This laziness property

allows out-of-date values to remain in the database until they are actually needed. This

can represent a significant savings.

It is interesting to note that because of the clean formalism of attributed graphs that

we have used, we-can express each of the four central routines used for automatic update

of values in under 15 lines of pseudo code.

In the next section we consider how to optimize update with respect to disk access.

Again we will find that the formalism used allows the optimized update algorithms to

remain fairly simple.

S.2. Optimized Updte

The algorithms we have outlined above are efficient in terms of the number of attri-

butes that they recompute when changes are made. However, they are not necessarily

efficient in terms of the number of disk accesses needed. In this section we look at optim-

izations that Cactis uses to improve the number of disk accesses performed.

If we examine the Mark_OutOfDate and EvalAttr routines which are central to

the evaluation algorithm, we see that they are each just a traversal of part of the attribute

dependency graph. In the naive algorithm, these traversals are implemented using

straightforward recursive procedure calls, and hence represent a depth first ordering. In
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the actual Cactis implementation, these traversals are performed explicitly by the system

in an order determined at run-time and can therefore be optimized. Because all attribute

evaluation rules are applicative in nature, we may in fact choose any traversal order

which visits the same atributes. In particular, we are free to choose an order which

reduces the number of disk accesses required.

In Cactis, we use an order of traversal which is chosen dynamically. The way we

choose this order is to use a concurrent system in which a number of sub-traversals are

(conceptually) running at the same time. Each time we reach a node which has two or

more descendents to traverse, we fork a sub-traversal process to traverse the graph in

each direction. For example, when we mark an attribute out-of-date, we then schedule a

traversal process for each of the attributes which depend on it. When we evaluate an

attribute, we request all the values needed to recompute its value in parallel. We can

think of this as a parallel traversal of the graph where each branch of the traversal runs

independently. To optimize disk access we use a greedy technique. Of all the sub-

traversal processes which are runnable at any given time we will choose to execute the

one which we expect to perform the least number of disk accesses.

In practice we will not create actual separate processes to accomplish our parallel

traversal but instead simulate multiple processes in a single process. We break all com-

putations into pieces or chunks to be scheduled independently. A chunk is a small piece

of code that runs to completion and performs one small task. For example, a normal

attribute evaluation rule is implemented using two chunks. The first schedules an evalua-

tion for each of the other attribute values it depends on, then makes arrangements to

schedule the second chunk when all the values are available. The second chunk, which is
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scheduled only after all the values it needs have been computed, executes the attribute

evaluation rule in order to compute the final value for the attribute. It then stores the

value and informs any process waiting for the value that it is now available.

Processes in the system are each represented by what we call a pending record. A

pending record is simply a data structure representing a pending computation. It contains

bookkeeping information such as the name of the attribute involved, the number of

values being waited for, storage-for the values, an optional pointer to a list of parent

pending records to be informed upon completion, and a pointer to a chunk routine to exe-

cute when all values are available. All chunk routines are constructed by the data

language compiler discussed in section 6. The system works by removing a pending

record from a priority queue of all currently runnable processes, and simply calling the

chunk routine found in the pending record. This routine performs an appropriate action

and terminates, at which time the system chooses a new process to run. The chunk rou- S

tine for a process can perform actions such as computing a new attribute value or

scheduling one or more new pending records. In addition, the chunk routine can, if

needed, inform parent processes of completion. Informing a parent involves decrement-

ing the number of values that the parent is waiting for (stored in the pending record for

the parent) and, if this number falls to zero, moving the parent's pending record to the

runnable queue.

The scheme for implementing simulated concurrency that we have described is very

simple, easy to implement, and has proven quite efficient. The technique we use is simi-

lar to that used in the OWL real-time concurrent programming language. For additional

information about implementation details, expected performance, translation of programs
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into chunks and experience with the OWL language see (141.

Once concurrncy has been introduced, the process of choosing a good traversal

order simplifies to a scheduling problem. We choose a process to run which we expect to

perform the least disk accesses. The obvious choice for this process is one which can be

processed using attributes currently in memory. Note that each process is associated with

one attribute, the one it is computing or marking out-of-date. It may need other attribute

values to compute its own value, but these are the responsibility of. other processes. Any

needed values will have been collected in storage attached to the process' pending.record

before it is scheduled as runnable.

We use a simple hashing scheme to index all pending records by the objects that

contain the attribute that they are associated with. Whenever a disk block is read into

memory, all processes which am associated with some object stored on that block are

promoted to a special very high priority queue. When new pending requests are

scheduled, we first check to see if the object associated with the request is already in

Repeat
Choose the most referenced object in the database that has not yet been assigned a block.
Place this object in a new block.
Repeat

Choose the relationship belonging to some object assigned to the block such that:
(1) The relationship is connected to an unassigned object outside the block and,
(2) The total usage count for the relationship is the highest.

Assign the object attached to this relationship to the block.
Until the block is full.

Until all objects are assigned blocks.

Figure 6. Clustering Algorithm
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memory, if so we schedule the request on the high priority queue. Since they can be exe-

cuted without additional disk access, processes on the high priority queue always have

priority over other processes.

In order to improve the locality of data references, we cluster dam in the Cactis

model on the basis of usage patterns. We keep a count of the total number of times each

object in the database is accessed, as well as the number of times we cross a relationship

between objects in the process of attribute evaluation or marking out-of-date. We then

periodically reorganize the database on the basis of this infcrmation. In particular we.

pack the database into blocks using the gredy algorithm shown in Figure 6. This algo-

rithm attempts to place objects which are frequently referenced together, in the same

block. This tightens the locality of reference for the database and results in increased

performance in databases where query sueams exhibit commonalities over time. In fact,

performance tests discussed in Section 7 indicate that proper clustering can result in sav-

ings of up to 60%. In addition to the clustering we have described, offline reorganization

includes housekeeping tasks such as garbage detection and collection and the generation

of statistics we use for scheduling, as described below.

Once all in memory processes have been executed we must choose a process to exe-

cute which will cause a disk access. We would like to choose the process which will

cause the least disk accesses, however, we cannot know in advance which process this

will be. What we will do instead, is use past behavior, or in the case of marking out-of-

date a worst case estimate, as a predictor of future behavior. We keep information about

past behavior in the form of a decaying average which changes nver time. This makes the

database self-adaptive, allowing changes in the structure of the database to be reflected in
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changing averages and hence changing scheduling priorities.

In the Cactis darn model, values flow across relationships in order to communicae

information from one object to another. In order to provide statistics for self-adaptive

optimization of the attribute evaluation process, we tag each relationship with a series of

decaying averages. These statistics represent the average number of objects visited (or

alternately the actual amount of disk I/O incurred) when each value transmitted across

the relationship was requested in the past. We use these tags to assign a priority to pend-

ing records which are requesting values from across a relationship. The highest priority is

given to the process with lowest expected disk I/O. Processes which request values local

to an object rather than across a relationship are not of concern sincc they will be

scheduled as high priority when the object is brought into memory. A special priority is

given to processes which are the direct user requests that start a chain of computations.

In the case of the traversal which performs evaluation of an attribute, we update

statistics when we returm to the attribute in order to store its new value. However, in the

case of the mark out-of-date traversal, we do not return to the object and hence cannot

store an updated statistic. In this case we use an alternate worst case statistic computed

when clustering was last performed. This statistic tells how many disk blocks will be

visited in the worst case (i.e., assuming that no attributes to be visited are already marked

out-of-date). A similar worst case statistic is used as an initial estimate for the dynami-

cally changing decaying averages.

To summarize our strategy for optimized update, we treat the traversals needed to

implement attribute evaluation as a concurrent computation. This allows us to dynami-

cally choose a traversal order that reduces disk access. In this framework, the choice of a

32

............



trave rsal order simplifies to the choice of a scheduling order. Sub-traversal processes

which can be executed without disk access are given highest scheduling priority. Once

all computations that can be performed on in-memory dam have been completed we

choose processes which have the smallest expected number of disk accesses to run first.

Expected disk accesses are measured by either using self-adaptive past performance

statistics in the form of a decaying average, or on the basis of worst case statistics gath-

ered at cluster time.

5.3. Triggers

While the Cacris dam model is powerful, it is not as general as unconstrained trigger

mechanisms. In particular, it is not possible to use the attribute evaluation strategy we

have discussed to directly make structural changes to data. Because of the optimized

implementation of derived dam we can often, with a little thought, do without structural

changes that would be needed under other models. However, in the cases where struc-

tural changes are required we must use a scheme equivalent to triggers. This scheme is

compatible with the rest of the attribute evaluation mechanism, but can result in the same

performance problems and unpredictable effects as normal triggers.

To implement triggers within the Cactis model, we have simply introduced attribute

evaluation rules with side effects. In particular, the following evaluation rules will

implement a trigger that should fire when a certain predicate becomes true.

P :pred(...);
LastP := Trigg-er(P,acrion proc);

Here the predicate controlling the trigger is represented by the function pred and the rou-

tine which implements the action of the trigger is represented by action-proc. Function-
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ally, the Trigger routine simply returns the value of P. However, it also "cheats" by look-

ing at the current value of LastP. If the value of LastP is about to change from false to

true Trigger() has the additional side effect of invoking action.proc. This technique can

also be extended by including a retraction action to be executed when Last? is about to

change from true to false. While the effects of the action...proc can cause an inefficient

chain of other calculations involving triggers, we can at least use the efficient attribute

evaluation algorithm to decide wfin to fire particular triggers.

5.4. Concurrency Control

Cactis uses a timestarnping concurrency control technique [43]. Because of the pos-

sibility of an updatt involving a long chain of computations which touches many objects,

a locking mechanism was judged too costly.

Concurrency control in Cactis is maintained at the level of individual attributes.

This allows a significant amount of concurrency, but does involve the potentially

significant space overhead. As Cactis is intended for applications with large, complex

objects, the space required for timestamps may not prove to be that significant. As dis-

cussed in Section 5, each attribute has associated with it a read timestamp (readtime)

and a write rimestamp (changetime). To support rollback, a log mechanism was imple-

mented. Standard timestamp logic is used; when a read or write conflict occurs, a

transaction's log is deleted and the mansaction is restarted with a new timestamp.

While it would seem that the transitive attribute dependencies that occur in a Cactis

database would require more than local timestamp checks, this is not the case. Instead,

all the required logic to properly handle transitive dependencies can be implemented as a

part of the normal marking and evaluation phases of the attribute evaluation algorithm.
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If a value is nansitively needed to compute another value, its timestamps will be checked

as a part of the (recursive) evaluation phase. The only unusual aspect of the system is

thar a request to read a value may cause both the read and write timestamps to be

updated, since the value may need to be recomputed.

In this section we have looked at a number of the implementation details of the

Cactis dam model and seen how concurrent, self-adaptive techniques are used to optim-

ize update. In the next section, we examine the Cactis data language. S

6. The Cactis Data Language

Part of the Cacris implementation effort has been the construction of an object

oriented data definition language (DDL) for the data model. This section will give an

overview of the parts of this language which deal with maintaining functionally derived

data. Details of the language constructs supporting the Sembase sub-system are

described in (15,22].

6.L Notation and Structure

In the Cactis data model, and hence the Cactis DDL, information is structured as

objects. These objects ame organized into a type hierarchy using a multiple inheritance

type system. Individual objects encapsulate a series of named and typed aaribute values,

along with atmbute evaluation rules which define how these values can be derived. In

addition, objects may be related to other objects by means of typed and directed relation-

ships. Information about the object may be exported along these relationships. Conse-

quently, the primary interface to an object is the set of values that it transmits along its

relationships, and the set of values it expects to be transmitted to it, along those relation-
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ships. Although relationships are directed to represent semantic concepts, derived data

can flow in both directions across the relationship.

Since relationships in the Cactis data model are directed, we call each end of a rela-

tionship either a black or a white connector. In the Cactis DDL, relationship types are

declared by stating the number, type, and direction of each of the values that flow across

a relationship. Values may flow either from black to white, or from white to black. Once

a relationship type has been declared, an object type can declare that it possesses a black

or white connector of that relationship type. Two objects can be related if and only if one

possess a black connector for a given relationship type and the other possess a white con-

nector.

As an example of the use of the Cactis DDL, we will describe the declaration of

objects which represent milestones in a software project. Milestones are a good example

of the kind of highly interrelated data that the Cactis system is designed to handle. A

milestone represents the scheduled and expected completion times for a single piece of

work to be performed in the project. However, this piece of work may depend on the

timely completion of other pieces of the project. Consequently, changing the expected

completion time of a single milestone (i.e. slipping a deadline) can have important effects

on the overall project. We cannot simply change a single milestone without checking

how this affects other milestones. It is crucial that the complete effect of such a change

be derived without omission or error, and that new milestones added to the system later

can also automatically take such changes into account.

Figure 7, contains an example of the syntax used to declare the relationships and

object types for milestones (we have modified the syntax slightly here to aid exposition). 0
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Relationship Type milestone-dep Multi White
Transmits

expcompl : time To Black; /* expected completion time comming into milestone /
End;

Relationship Type milestone-need Multi Black
Transmits

exp-compl : time To Black; /* expected completion time going out of milestone /
End;

/* Object to simulate many-many relationship for milestone dependencies */
Object Type mstonermany

Relationships
fromobj • Black milestoneneed;
to-obj White milestonejdep;

Rules
to.obj.exp..compl := from-..obj.exp-compl;

End;

Object Type milestone
Relationships

depends-on : Black milestone-dep; /* things this milestone depends on */
needed-by White milestoneneed /* things depending on this milestone '/

Attributes
sched_compl time; /* originally scheduled completion time */
local-.work time; /* tine to complete milestone alone */
expectedcompletion • time;

Rules
expectedcompletion

/* sum of local work and latest out of things depended on */
local-work +"
Iterator latest : time

Init 0
For Each dep In depends-on Do

latest := later..of(latest, dep.expcompl);
End;

needed_by.exp-compl := expected-completion;
End;

Figure 7. Milestone Object Types
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Figure 8. Milestone Objects

Figure 8. shows a graphical representation of several example objects of the types

defined in Figure 7 illustrating how they would be connected in practice. In Figure 7, we

first declare two relationship types milestoneldep and milestone-need. These relation-

ships taken together are used to represent the many to many relationship of one milestone

being dependent on another. Cactis relationships can be one to many, but not many to

many. To implement many to many rela:ionships between milestone objects we use an

extra object of type mstone.many. This approach is similar to the strategy used to imple-

ment the set construct in the CODASYL model. As we have declared them, each rela-

tionship is one to many. We use objects of type mstone-many to connect this pair of one

to many relationships into a many to many relationship. Note that these relationships

transmit one value: exp.compl. This is the expected completion time of the milestone

being depended upon.

Each milestone in the system is responsible for computing its own expected corn-

plerion ome baed on ,he expected complenion time of the things it depends on, along

with internal informa-ion about how much work is required locally. The milestone object
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Object Type monitored-milestone Subtype of milestone

Attributes
late : Important Boolean

Rules Zr
late := later..than(expectedcompletion, sched compl);

End;

Figure 9. Monitored Milestone

type shown in Figure 7 contains attributes and attribute evaluation rules to accomplish

this. The attributes sched_compl and local-work are intrinsic attributes representing the

originally scheduled completion time for the milestone and the amount of time needed to

complete the milestone, respectively. ThIe attribute expected-completion computes the

actual expected completion time for the item. This is done using the Ierator facility of

the Cactis DDL language to compute the latest of all the milestones that the current mile-

stone depends on. This latest time is then added to the amount of local work to be done

to obtain an expected completion time for the milestone (we have slightly simplified the

computation here by not properly accounting for milestones which are not dependent on

other milestones). The single attribute evaluation rule shown here can be used to keep

the expected completion times for all milestones in an arbitrarily large project up to date

automatically.

Once we have created an object type such as the milestone type shown in Figure 7,

we can use the inheritance facility of the language to create a new object type:

monitored-milestone. which adds a new attribute as shown in Figure 9. This attribute

explicitly computes whether a milestone is expected to be late. This late attribute could
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be used to alert the user of potential unexpected problems when changes are made to the

database. Since this new object type offers a black milestonedep connector and a white

milestoneneed connector, it can be substituted for any existing milestone object without

disturbing the existing functionality of the system. In this case, a subtype of an existing

object type was used. However, in general, objects of any type with the proper connec-

tors could be substituted. Further, these new objects could be integrated with existing

milestone objects without forcing them to be replaced. This is an example of how the

Cactis data model is well suited to extending the functionality of an existing database

while still supporting existing objects and functionality. This is particularly important

for application domains such as software environments where we expect to add new

objects and tools to the system during its use.

In addition to the features we have illustrated above, the Cactis DDL also offers the

ability to create new attribute types using records, arrays, and a set of primitive types

such as stings, characters, integers, booleans, and real numbers. Attribute evaluation

rules are constructed using expressions built from a subset of the operators of the C

language extended with the iterator shown above, as well as constructs for computing

array and record valued expressions. Name equivalence typing is used throuV'Iout.

Finally, the system provides the capability to invoke user supplied functions written in C,

Pascal, or Fortran so that complex or expensive computations can be handled in a con-

ventional programming language.

6.2. Implementation

The Cacris DDL translator is implemented in C using the lex and yacc compiler

generation tools. It creates standard C code and data structures which are suitable for
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input to the Unix C compiler.

Most of the implementation of the translator uses straightforward compiler tech- 0

niques. The only unusual aspect of the translator is the way it treats expressions. As dis-
K

cussed in the last section, the optimized update algorithm used requires that expressions

be broken into "chunks" which can be scheduled independently. The translator is respon-

sible for breaking all expressions into these chunks. This is done using a general strategy

where the values needed to compute an expression are all requested in parallel, then

when all values are available, the expression itself is computed. This involves creating a

chunk for requesting each value, and a chunk for evaluating the expression itself. In the

case of conditional expre ;sions and iterators, the expression evaluation chunk is further

recursively broken into request and evaluation chunks. In all cases, the translator com-

piles request and evaluation chunks in such a way that the proper chunk is placed on the

scheduling queue by other chunks at the proper time. This compile time analysis allows

the run-time scheduler to be very simple and efficient.

7. Performance Tests

In this section we discuss a number of performance tests that have been run on

Cactis. The purpose of these tests was not to benchmark Cactis against any known stan-

dard. Rather, we wanted to illustrate the effectiveness of. two tlings: the priority

mechanism of the scheduler and the algorithm used to cluster databases off-line. It is

important to note that the self-adapuve nature of Cactis assumes that there is a certain

amount of similarity of processing requests over time so that information about the past

is in some way predictive of the future. However, even with little similarity in query his-

tory, the scheduler would still be able to take note of the blocks currently in memory and
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give scheduling priority to processes that needed these blocks. Also, the clusterer would

still provide some benefits over randomly placed data.

To perform the tests, we constructed test databases and query streams. In order to

simulate repeated query sessions on one database, identical query streams were used.

We realize that this is somewhat unrealistic and produces results that am better than they

should be. But it was not possible to get any real feel for how much similarity would

exist from one session to another in an actual Cactis application. In order to facilitate the

construction of test databases, a database generator was constructed. It is described in

the next subsection, then following that, the test results are summarized.

7.1. The Database Generator

The database generator creates random schema, data, and query streams tailored to

specific parameters. In particular, the database generator can be used to create random

databases in which aspects such as interconnection patterns, overall interconnection

level, and number of relationship cycles in the data, can be varied under user control.

This has allowed us to test the Cactis system on a range of different types of data.

The database generator accepts six pieces of information from the user to describe

the characteristics of a generated database. This information includes:

Total Size-

The total number of objects in the resulting database.

Connected-Size -

The size, in terms of number of objects, of each connected component of the result-

ing database.
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Density -

A factor which determines the overall density of attributes within objects.

Cycle Bias -

A bias factor which determines the likelyhood of relationship cycles occurring in

the data.

Important-Bias -

A bias factor which determines the percentage of attributes in the data which will be

designated important.

Templates -

A set of attribute dependency templates which determine the actual structure of

attribute dependencies in the resulting database.

connected:= empty;,
unconnected:= set of objects to be connected;
01 := random object removed from unconnected;
Add O 1 to connected;

Repeat
01 :=random object in connected;
If random() > Cycle Bias Then

/* no cycle created */
02 := random object removed from unconnected;
Add 02 to connected;

Else
/* cycle created */
02:= random object in connected;

Create relationship between 0 1 and 02;
Until unconnected is empty;

Figure 10. Random Connection Algorithm
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Repeat Density times
P := root node of random template tree chosen from Templates;
0 :- random object chosen from current connected component;
Root-attr := Layout(P,O);
If randomO < ImportantBias Then designate Rootattr important,

Layout(P,O):
Place new attribute A in object 0;
For Each Child. P_child of P Do

02 := randomly selected object related to 0;
B := Layout(P-child. 02);
Make attribute A dependent on attribute B;

End;
Create attribute evaluation rule for A which reflects dependencies created;
Return(A);

Figure 11. Random Attribute Layout Algorithm

The generator works in two phases. In the first phase, it creates data objects and

connects them via relationships. In the second phase it creates attributes to be placed in

these objects, creates attribute dependencies to relate these attributes, and generates attri-

bute evaluation rules corresponding to these dependencies.

Generated databases arm partitioned into connected components. The first phase

works by first creating Total Size/Connected Size objecu to be placed in each con-

nected component of the resulting database. The objects in each such component are

connected via relationships using the algorithm shown in Figure 10. This algorithm

establishes random relationships between objects in the connected component. The pro-

portion of these relationships that represent cycles in the (at this point undirected) rela-

tionship graph is determined by the Cycle Bias parameter.
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After the objects of the connected components are created and related, the database

generator proceeds to place amibutes in these objects. This is done using the templates

provided by the user. These templates are trees which indicate how a set of randomly

created attributes should be related to one another. The system uses these template trees

in the recursive algorithm shown in Figure II to assign attributes and attribute dependen-

cies to objects. By varying the nature of the templates used along with the Cycle-Bias

parameter, large random databas6s can be generated with a wide range of connectivity

characteristics.

In addition to the connection characteristics of a created database, the user can also

specify the characteristics of the query streams generated for the database. In particular,

the user can modify the percentage of reads and writes along with the length of query

streams.

7.2. Test Results

In the performance tests, all databases were of size 100 objects. The size of each

connected component varied from 4% to 30%. The density was set to a default medium

value. The cycle bias was ranged from low to medium, to high. In all tests, the impor-

tant bias was at 30%. The template was a simple binary tree.

Cactis is intended for use in engineering design applications. Thus, we assume that,

compared to a traditional business database, a Cactis database would have fewer and

larger objects, and would have a significant amount of derived data. For this reason, we

adjusted the sizes of the objects and the processing buffers so that only a handful of

objects would fit in memory at one time. Further, we tested Cactis with a with, vriety of

cycle and connectivity settings.
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Fi gure 12.

The generated query steams consisted of 5% updates. Each test consisted of run-

ning the same query stream five times, then reclustering. Then the query stream was run

five more times, and reclustering performed again. Finally, the query steam was run five

more times. This pattern was repeated for all permutations of connectivity, cycles, and

I
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for each of the following scheduling algorithms: our optimized priority algorithm, and

fidrst come frsr serve.

Fig=- 13.
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Figures 12 and 13 illusrate the effectiveness of the Cactis scheduling algorithm.

Figure 12 contains three superimposed graphs, one for each of the three cycle bias set-

tings (marked by a square, a circle, and a diamond). The vertical axis represents the sav-

ings in 1/0 reads when the priority scheduler is used instead of a first come, first serve

algorithm. The savings is expressed as a percentage of the 110 count derived from using

the first come, first serve algorithm. Figure 13 is a similar graph, except it does not com-

pare first come, first serve with the priority algorithm. Rather, it compares two sessions

which both use priority scheduling, but with clustering being performed in between.

These graphs obviously exhibit fluctuations, but do indicate clear trends.

These results indicate four general patterns. The first three conclusions refer to the

databases with medium and high cycles. First, for very low connectivity, the Cactis

scheduler provides only a small improvement. Indeed, Cactis would not do well in many

traditional business environments, where there is very little derived data. Second, for

connectivities in the 12% to 20% range, the Cactis scheduler provides a substanual sav-

ings. Third, for very high connectivities (where over 30% of the database is intercon-

nected) Cactis does not perform well. This makes sense; with a large chunk of the data-

base interconnected, it is impossible to keep in memory a working set of blocks which

may be used to satisfy a number of requests.

The fourth conclusion is that for all databases with low cycles, the Cactis scheduler

does not perform as well. Again, this makes sense for the same reason very low connec-

tivines lead to bad performance. A low level of cycles means that if a page is currently

in memory, it is less likely to be needed by another computation currently outstanding.

Thus, the priority scheduler is not able to make use of as much locality of reference in
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selecting the tasks to perform. However, in the case of low cycles, the clusterer will pro-
vide a substantial improvement in I/O cost (see immediately below).

Figure 13 indicates the performance of Cactis when off-line clustering is used

between two database sessions. Cactis was run twice for each data set, and both times,

priority scheduling was used. The vertical axis shows the percent savings in I/O hits as a

result of clustering. The results may be summarized very simply. Reclustering the data

leads to a very substantial savings in cost in all cases, except when connectivity is very,

very low. The reason for this is clear; with little connectivity, there isn't an effective

way to recluster.

8. Limitations, Directions, and Conclusions

The current Cactis system has a number of limitations or unimplemented features.

The system currently has no facilities for rollback or recovery except for those used in

concurrency control. The data model does support an efficient undo capability which

allows transactions to be rolled back and/or reapplied, however, this facility only works

in a single user environment and not in a multi-user concurrent environment. This facility

uses the property of the data model that all indirect updates automatically performed by

changing one or more attribute values can be just as automatically undone simply by res-

toting the old value (a similar property holds for structural changes). Consequently, the

same mechanism used to derive data, can also "underive" that data with equal ease. This

capability is very useful in an interactive design environment, where the user may wish

to try out alternatives and explore their effects without permanently committing to them.
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A philosophically similar capability with an entirely different implementation

approach can be found in the hypothetical databases approach discussed in [39,40,44].

Systems based on this concept us a differential file mechanism to explore various ver-

sions of a relational database. Currently research includes work on extending the Cactis

single user undo system to operate in a multi-user environment.

In addition to the lack of a rollback and recovery mechanism, the current system Q

also does not yet support conventional set-oriented queries. Also, because compiled C

functions are used to define attribute evaluations rules, (see Section 5) we have little

flexibility in dynamically changing the schema. Finally, the system does not provide

authorization and security facilities, although it is unclear that these are of major impor-

tance in the engineering environments Cactis is intended to support.

As we have stated, the Cactis database is intended to support applications which

require a rich modeling capability, in particular, engineering desigii applications. In

order to test the effectiveness of the Cactis database in managing such complex interre-

lated data, we have begun to explore its use in the support of application areas such as

software environments (19]. In addition, we are also in the process of constructing a dis-

tributed version of Cactis, with this effort just getting under way. As modern software

environments will most likely be used in distributed workstation applications, this facility

is viewed as crucial. It will be necessary to allow different users at different machines to

configure their own environments privately and share information. Cactis is well suited

to this task, as it allows the end user to conveniently tailor a local database. Also, the

concurrent implementation of Cactis is naturally suited to a parallel or distributed system,

In this way, various sub-traversals may actually be running at the same time. Additional
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work is now underway to support replicated data in a distributed environment. Finally,

research is now underway to support extensions to the logical data model and physical

data model to improve efficiency and expressiveness.

To conclude, we have introduced a powerful data model based on derived data.

This model is accompanied by a very simple incremental update algorithm which lends

itself to an optimized self-adaptive physical implementation based on the selective

scheduling of concurrent subtasks.
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